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T H E  P R E S S U R E  F I E L D  OF A U N I F O R M L Y  L O A D E D  

R E C T A N G U L A R  W I N G  IN A S U P E R S O N I C  F L O W  

N. F. Vorob'ev UDC 533.69 

Two problems are distinguished in wing aerodynamics: the direct aerodynamic problem (determination 
of the field of gas-dynamic flow parameters from a specified wing geometry) and the inverse aerodynamic 
problem (determination of the field of flow parameters from a specified load on the wing). For a thin finite- 
span wing in supersonic flow [1-3], the solution of the direct problem in a linear formulation is represented as 
the potential 

�9 a ( x , y , z ) = -  s + y 2 l  

and the solution of the inverse problem is represented as the potential 

[ ( z  - + y21 /(  _ _ [ ( z  - + 

Here s is the region of dependence of the point P ( x , y , z )  in the base plane 77 = 0; ~ ( ~ , ( )  and q~(~,() are 
the flow downwash and the pressure difference in the plane r /=  0, respectively; (x, y, z) are the coordinates 
of the point P in the rectangular Cartesian coordinate system related to the physical rectangular coordinate 
system by zl = ~ -  1 x, yl = y, and zl = z. The region of dependence s is bounded by the line L of 
intersection of the characteristic cone whose vertex is at point P with the plane r /=  0: 

(x - ~ )  - ~ / ( z  - ( ) 2  + y2 = 0 .  (3 )  

Many papers are devoted to solving direct aerodynamic problems following (1), with a simple kernel. 
The solution of problems in the form of potential (2) involves difficulties related to the complex structure of the 
integrand kernel and to the substantial singularity when the point P tends to the base plane (y ~ 0) [4]. 1 When 
the gas-dynamic flow parameters (derivatives of the velocity potential) are found, the power of the integrand 
singularities increases, sometimes making impossible formal differentiation. In some cases, differentiation gives 
rise to singularities that make the integrals divergent. The condition of existence of integrals in the sense 
of Hadamard is often used [2]. The introduction of such symbols not only complicates the realization of 
the algorithms of solution but, sometimes, also requires justification of physically absurd results. However. 
a careful account of the singularities of the kernels of integral operators and some smoothness conditions 
imposed on the governing parameters of the problem allow one to represent gas-dynamic flow parameters 
using bounded functions [3, 4]. 

In this paper, the pressure field (the most illustrative gas-dynamic flow characteristic) of a uniformly 
loaded wing with a rectangular plaaform is represented in terms of elementary functions. This result, being 
of interest by itself (the pressure field induced by some rectangular element of aircraft), can be used in 
realizing the algorithm of solution of inverse problems for complex-shaped wings when the wing projection 
onto the base plane is divided into rectangular cells, and also as a test for numerical calculations. Since the 
differentiation and integration operations required to solve the problem are too complicated and cumbersome. 
they are omitted. 

1The notation of the coordinate axes y, 77 and z, ( in the figure in [4] should be interchanged. 
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Let us consider the supersonic flow around a rectangular wing with span 2b and length l (l /> 2b). 
Figure 1 shows the traces of the cones of dependence of points P(z,  y, z) in the plane 7 /=  0. Characteristic 
regions with typical forms of solution can be distinguished. 

For points in the plane z = coast, 0 < z < b, there are six typical regions of solution. 
Region I includes points P(x, y, z); the trace L of their cone [hyperbola (3)] intersects twice the leading 

edge of the wing ~ = 0, wi thout  crossing the side edges. 
In region II, the hyperbola  L intersects the leading edge ~ = 0 and the side edge ff = b. 
In region III, the hyperbola  L intersects the side edges ff = - b  and ~ = b without  crossing the leading 

and trailing edges. 
In region IV, the hyperbola L intersects twice the trailing edge ~ = I and the side edges ff = - b  and 

~=b.  
In region V, the hyperbola L crosses one t ime the trailing edge ~ = I and the side edge ~ = -b .  
In region VI, the hyperbola L does not cross the wing projection; this region is extended infinitely 

downstream. 
Points 1-5 (Fig. 1) in the plane z = coast (0 < z < b) are the boundaries (downstream) for points 

P(x, y = O, z) in regions I-V. For points P(z, y = 0, z), the hyperbola L is degenerated into the characteristic 
curves emanat ing from points 1-5. 

For points P(x, y, z) lying in the plane of symmetry  z = 0, there are no regions II and V. For points 
P(x, y, z) lying in the plane of the side edge z = b, region I degenerates into the curve y = x (into the point 
z = 0, y = 0 in the plane 77 = 0); there is no region IV. For points P(z, y, z) in the plane z = const, z > b. 
regions II, III, V, and VI exist. 

Figure 2 shows isometrically region I located above the right half of the wing. It is bounded by the 

leading characteristic plane y = x and by the surface y = X/z 2 - ( b -  z) 2. In the plane z = b, region I 
degenerates into the characteristic curve y = x. At large distances from the wing (x >/y  >/ H >> I >/ b), the 

surface y = ~/z 2 - (b - z) 2 approaches asymptotically the leading characteristic plane y = x. 
Figure 3 shows a sketch of sections of regions I -VI by the symmetry  plane z = 0. The  characteristic 

y = z separates the undis turbed flow region and region I. The  curve y = v / ~ -  b 2 is the boundary between 
regions I and III. The  characteristic y = x - l is the boundary between regions III and IV. The curve 
y = ~/(x - / ) 2  _ b 2 separates regions IV and VI. 

After cumbersome integration and differentiation operations, the pressure field for a uniformly loaded 
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[r ~) = p0] rectangular wing is expressed in terms of elementary functions. Introducing the function 

(~ _ ~)2 _ [(z - 0 2 + y21 
arcsin {1 - 2y 2 [(x : 2 ~  22 y2-~(~--~)~ ~y2]}  = arc (~, ~), 

we write the resulting values of ~ ( x ,  y, z) in regions I-VI. 
In the plane z = const, 0 ~< z <~ b, the solution is 

~ = Po, y <~ x ~< ~/(z - b) 2 + y2 (region I), 

~ '+arc(O,b)  , ~/ ( z -b )2  + y2 <<. x <~ ~/(z + b)2 + y 2 

~ : = p 0  [ ] 7r + arc (0, b) + arc (0 , -b)  , 

~, = p o [  )] - r + arc (O, b) + arc (O, - b  , 

~, = p o [  ,~ ] - ~ + a r c ( O , b ) + a r c ( O , - b )  - arc (l,b) , 

~ ,  = ~PO [arc (O, b) + arc (O, -b)  - arc (/, b) - arc (l, -b)] ,  x > ~ l + ~ / ( z + b )  2 + y 2  (region VI). 

In the plane z = const, z ~> b, the solution is 

] e ' ~ = ~  -arc(O,b) ,  ~ / ( z - b ) ~ + ~ 2 . < ~ . < ~ / ( z + b ) ~ + ~ 2  

~Slz= p~ [arc (O, -b )  - arc(O,b)] 

q~'x-- 27r p-2~ - ~ + a r c  (0, - b ) - a r c  (0, b) + arc 

~ / ( z+b)  2 + y 2 ~ < x < ~ ( l + y )  

(l + y) .< �9 .< t + ~/(z - b)2 + y2 

l + ~ / ( z -  b)~+y2 .< 

(region II), 

(region III), 

(region IV), 

x <~ l+~/(z + b) 2 + y 2 (region V), 

(region II), 

(region III), ~ / (z+b)  2 + y 2  ~<x < ~ l + ~ / ( z - b )  2 + y 2  

(t,b)], l+~/(z-b)~+y2 .< x .< l+~/(z+b)2 + y2 (region V), 

(4) 

The boundaries of the regions of solution are surfaces in the disturbed flow region. 
In the above solutions, arc (0, b), a rc (0 , -b ) ,  arc (l, b), and a r c ( l , - b )  are the values of function (4) 

at points (~ = 0, ~ = b), (~ = 0, ~" = -b) ,  (( = l, ~ = b), and (( = l, ~ = -b) ,  respectively. For points 
P(x,  y = O, z) lying in the base plane, arc (0, +b) = arc (l, +b) = ~'/2. For points P(x,  y, z = 0) in the 
symmetry plane of the wing, arc ( 0, b) = arc (0, -b)  and arc (l, b) = arc (l, -b) .  For points P(x,  y, z = b) in the 
plane of the right-hand side edge, arc (0, b) = arc (l, b) = -~r/2. Furthermore, the following equalities are valid 

at the boundaries of regions I-VI: arc (0, b) = r / 2  for regions I and II [on the surface z = ~/(z - b) 2 + y2]. 

a r c (0 , -b )  = 7r/2 for regions II and III [on the surface x = b/(z + b) 2 + y2], arc(/ ,b) = ~'/2 for regions IV 

and V [on the surface x = l + ~ / ( z -  b) 2 + y2], and a r c ( / , - b )  = ~'/2 for regions V and VI [on the surface 

x ; l + x/(z + b)~ + y~ 1. 
Taking into account the above-mentioned properties of function (4), one can easily analyze the pressure 

field obtained from the solutions in regions I-VI. 
In the base plane y = 0, the pressure difference is ~', = 0 everywhere outside the wing projection S. 

As should be expected, qS' x = p0 on the projection S. 
In the plane z = b, the solution is not discontinuous. The solution for z ~< b is continuously transformed 

into the solution for z ) b; the solutions are glued in regions II, III, V, and VI. 
For Izl ~< b, the solution is continuous at the boundaries of regions I and II, II and III, IV and V, and 

V and VI. The solution is discontinuous at the boundary of regions III and IV. 
For z ) b, the solution in one region is continuously transformed into the solution of the next region 

(taking into account that,  for z = b, regions I and VI degenerate into the characteristic curves y = x and 
y = x - l, respectively). 
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The boundary of regions III and IV is the characteristic plane y = x -  1 passing through the trailing edge 
of the wing ~ = I. The pressure difference is constant, [O~(III) - O~(IV)] = p0, over the entire plane y = x - l. 
However, unlike the constant pressure difference p0 in the leading characteristic plane, which is the boundary 
between the undisturbed flow and region I, where the pressure equals zero upstream of the discontinuity 
surface and is constant and equal to p0 behind this surface, the pressure on the "rear" characteristic surface 
is a variable quantity on both sides of it. 

Figure 4 shows the spanwise variation of ~ in the characteristic plane y = x - I in regions III 
(curves III) and IV (curves IV). Near the base plane (y ~ 0, Fig. 4a), ~ changes from p0 in the symmetry 
plane z = 0 to po/2 in the plane of the wing side edge in region III, and from zero to -po/2 in region IV. The 
pressure difference is the same and equal to p0 everywhere. At a large distance from the base plane (y ~ oo, 
Fig. 4b), ~ = 0 in region III and t ~  = -p0 in region IV with second-order accuracy. The pressure difference 
is again equal to p0 along the entire wing span. 

Let us analyze the O~ distribution in the symmetry  plane of the wing z = 0. The flow pattern in this 
plane is presented in Fig. 3. Let us distinguish several cross sections Y = Y* = const: O, b, H >> l/> b, o~. The 

length of regions I and IV in these sections is A(y) = ~ + y2 _ y. For the chosen sections A(0) = b, A(b) = 

( v ~ -  1)b, A(H)  = b2/2H (with second-order accuracy), and A(oo) = 0 (regions I and IV asymptotically 
degenerate into the characteristic curves y = x and Y = x - I, respectively). In the cross section y* = 0 
(Fig. 5a), as follows from the formulation of the problem, ~ = P0 on the wing (r  <~ l) and ~ = 0 in the 
wake behind the wing (r  > I). 

There is a new variable r = x - y *  in Fig. 5. In the new variables in all cross sections, r = 0 corresponds 
to the leading characteristic curve y = x and r = l to the characteristic curve y = x - l. As can be seen from 
Fig. 5a-d, the quantity q~t z undergoes a jump [ ~ ( I I I )  - O~z(lV)] = p0 in the characteristic curve y = x - l in 
all cross sections y = y*, as was noted above in the analysis of Fig. 4. In the cross section y* = b (Fig. 5b), the 
length of the constant-pressure region decreases to the value ( x / 2 -  1)b, after which ~'z decreases continuously 
to the value of 0.55p0 on the characteristic curve y = z - 1, where it undergoes the jump p0- After the jump, 
q~ < 0, decreasing in absolute value, tends asymptotically to zero as r ~ oo. At large distances from the wing 
(y* = H >> l /> b, Fig. 5c), the disturbances from the wing S with second-order accuracy are concentrated 
in narrow regions I and IV with lengths A(H),  where ~ = p0- The results presented in Fig. 5c can be 
treated as sonic-boom characteristics in the symmetry plane of a rectangular wing with span 2b: the leading 
pressure jump of intensity p0 and the trailing rarefaction jump of intensity -p0,  the length of the jumps being 
A(H) = b2/2H. At very large distances (y ~ o~, Fig. 5d), the length A(oo) --~ 0, and regions I and IV 
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degenerate into the curves y = x and y = x - I, where ~I," has a discontinuity p0. 
Let us analyze the ~" distribution in the plane x = const passing through regions I and II (the edge 

effect region). In region II, the solution is written as 

o, ] + a r c ( 0 ,  b) 

o, }] - arc (0, b 

for z ~< b; (5) 

for z /> b. (6) 

Figure 6 shows the section plane x = const of the disturbed region. The curve Ob is the trace of the 
right half of the rectangular wing, and the curve cocd is the trace of the leading characteristic surface (coc is 
the trace of the characteristic plane y = x). The trace of region I is the rectangle OcocaO, and that  of region 
II is a semicircle acdba of radius x. 

Let us write the expression arc (0, b) in extended form 

_ [(z - b) 2 + u2] ( 
arc (0, b ) =  arcsin ~ 1 -  2y 2 (x~--_.-y~-~)[~ _ - -~-~y2]  ~" 

We substitute the variables y = p sin 0 and (b - z) = p cos 0; the direction of counting of the angle 0 is shown 
in Fig. 6. According to the substitution of variables, [(z - b) 2 + y2] = p2, and, hence, 

x 2 _ p2 
arc (0, b ) =  arcsin { 1 -  2sin2 0 x2 - p2 sin2 0}" (7) 

Solution for z <<. b [equalities (5) and (7)]. At the interface between regions I and II (on the circumference 
ac when p = z), we have r = p0; the solution in region I is continuously transformed into the solution in 
region II (this result was noted above in the general flow analysis). In the base plane y = 0 (on the segment ab 
of the wing trace when 0 = 0), ~" = p0, which is consistent with the conditions imposed by the formulation 
of the problem. In the side edge plane z = b (when 0 = ~r/2), #~ = po/2. 

Solution/or z >1 b [equalities (6) and (7)]. In the side edge plane z = b (when 0 = ~r/2), the solution 
is continuous (this result was noted above). For points z /> b on the slot of the base plane (on the segment 
bd when 0 = ~r), we have ~" = 0, which is also in agreement with the formulation of the problem. For points 
on the diffraction portion of the leading characteristic surface (on the circumference cd when p = x), we have 
~" = 0, which is consistent with the generally accepted boundary conditions in a linear formulation. 
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